Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range.
نویسندگان
چکیده
Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate self-sustained oscillations that entrain to periodic external signals such as the 24 h light-dark cycle. Vertebrates possess multiple, functionally overlapping homologues of the core clock genes. Furthermore, vertebrate clocks entrain to a range of periods three times as narrow as that of other organisms. We asked whether genetic redundancies play a role in governing entrainment properties and analysed locomotor activity rhythms of genetically modified mice lacking one set of clock homologues. Exposing them to non-24 h light-dark cycles, we found that the mutant mice have a wider entrainment range than the wild types. Spectral analysis furthermore revealed nonlinear phenomena of periodically forced self-sustained oscillators for which the entrainment range relates inversely to oscillator amplitude. Using the forced oscillator model to explain the observed differences in entrainment range between mutant and wild-type mice, we sought to quantify the overall oscillator amplitude of their clocks from the activity rhythms and found that mutant mice have weaker circadian clocks than wild types. Our results suggest that genetic redundancy strengthens the circadian clock leading to a narrow entrainment range in vertebrates.
منابع مشابه
Entrainment of the human circadian clock.
Humans are an excellent model system for studying entrainment of the circadian clock in the real world. Unlike the situation in laboratory experiments, entrainment under natural conditions is achieved by different external signals as well as by internal signals generated by multiple feedbacks within the system (e.g., behavior-dependent light and temperature changes, melatonin levels, or regular...
متن کاملHuman Chronotypes from a Theoretical Perspective
The endogenous circadian timing system has evolved to synchronize an organism to periodically recurring environmental conditions. Those external time cues are called Zeitgebers. When entrained by a Zeitgeber, the intrinsic oscillator adopts a fixed phase relation ψ to the Zeitgeber. Here, we systematically study how the phase of entrainment depends on clock and Zeitgeber properties. We combine ...
متن کاملWhat makes the Arabidopsis clock tick on time? A review on entrainment
Entrainment, the synchronization of a circadian clock with the external environment, is a crucial step in daily life. Although many signals contribute to entrainment, light and temperature are typically the strongest resetting cues. Much progress has been made concerning light resetting in the model plant Arabidopsis thaliana . Multiple photoreceptors (phytochromes, cryptochromes, LOV-domain pr...
متن کاملModeling the circadian clock: from molecular mechanism to physiological disorders.
Based on genetic and biochemical advances on the molecular mechanism of circadian rhythms, a computational model for the mammalian circadian clock is used to examine the dynamical bases of circadian-clock-related physiological disorders in humans. Entrainment by the light-dark cycle with a phase advance or a phase delay is associated with the Familial advanced sleep phase syndrome (FASPS) or th...
متن کاملEntrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms
The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 10 84 شماره
صفحات -
تاریخ انتشار 2013